Implementing AI Models for Prognostic Predictions in High-Risk Burn Patients

Author:

Yeh Chin-Choon1,Lin Yu-San1,Chen Chun-Chia1,Liu Chung-Feng2ORCID

Affiliation:

1. Department of Plastic Surgery, Chi Mei Medical Center, Tainan 711, Taiwan

2. Department of Medical Research, Chi Mei Medical Center, Tainan 711, Taiwan

Abstract

Background and Objectives: Burn injuries range from minor medical issues to severe, life-threatening conditions. The severity and location of the burn dictate its treatment; while minor burns might be treatable at home, severe burns necessitate medical intervention, sometimes in specialized burn centers with extended follow-up care. This study aims to leverage artificial intelligence (AI)/machine learning (ML) to forecast potential adverse effects in burn patients. Methods: This retrospective analysis considered burn patients admitted to Chi Mei Medical Center from 2010 to 2019. The study employed 14 features, comprising supplementary information like prior comorbidities and laboratory results, for building models for predicting graft surgery, a prolonged hospital stay, and overall adverse effects. Overall, 70% of the data set trained the AI models, with the remaining 30% reserved for testing. Three ML algorithms of random forest, LightGBM, and logistic regression were employed with evaluation metrics of accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC). Results: In this research, out of 224 patients assessed, the random forest model yielded the highest AUC for predictions related to prolonged hospital stays (>14 days) at 81.1%, followed by the XGBoost (79.9%) and LightGBM (79.5%) models. Besides, the random forest model of the need for a skin graft showed the highest AUC (78.8%), while the random forest model and XGBoost model of the occurrence of adverse complications both demonstrated the highest AUC (87.2%) as well. Based on the best models with the highest AUC values, an AI prediction system is designed and integrated into hospital information systems to assist physicians in the decision-making process. Conclusions: AI techniques showcased exceptional capabilities for predicting a prolonged hospital stay, the need for a skin graft, and the occurrence of overall adverse complications for burn patients. The insights from our study fuel optimism for the inception of a novel predictive model that can seamlessly meld with hospital information systems, enhancing clinical decisions and bolstering physician–patient dialogues.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference32 articles.

1. The burn injury—A summary;Artz;J. Trauma,1966

2. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring;Wang;Adv. Drug Deliv. Rev.,2018

3. Plastic reconstruction following third degree burn of forearm;Brodie;Am. J. Surg.,1947

4. Early debridement of second-degree burn wounds enhances the rate of epithelization--an animal model to evaluate burn wound therapies;Davis;J. Burn Care Rehabil.,1996

5. Pencle, F.J., Mowery, M.L., and Zulfiqar, H. (2023). First Degree Burn, StatPearls.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3