Affiliation:
1. Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
2. Diagnostic Products Development, Department Research & Development, Sekisui Medical Co., Ltd., Tokyo 103-0027, Japan
Abstract
Thymus- and activation-regulated chemokine (TARC, also known as CCL17) is used as a biomarker for atopic dermatitis. The methods currently used for its measurement are complex, time-consuming, and require large machinery, warranting the need for a method that is simple, has a quick turnaround time, and requires less complex machinery. We evaluated the analytical performance of a novel latex turbidimetric immunoassay method, “Nanopia TARC”, on 174 residual serum samples from patients with skin or allergic diseases. This evaluation included the assessment of the limit of blank/detection/quantification (LOB/D/Q), precision, accuracy, linearity, interference, and commutability between Nanopia TARC and “HISCL TARC”, based on the chemiluminescent enzyme immunoassay (CLEIA) method. The LOB/D/Q values were 13, 57, and 141 pg/mL, respectively. The coefficient of variation of the repeatability was 0.9–3.8%, and that of the intermediate precision was 2.1–5.4%. The total error of the accuracy was 1.9–13.4%. The linearity was 141 and 19,804 pg/mL for TARC. The correlation coefficient between Nanopia TARC and HISCL TARC determined using the Passing–Bablok regression analysis was 0.999. Furthermore, the concordance of diagnostic criteria with AD was 92%. Nanopia TARC was confirmed to have the same analytical performance for TARC measurement as the existing CLEIA method.
Funder
Sekisui Medical Co., Ltd.
Department of Laboratory Medicine, Hamamatsu University School of Medicine