Diagnosis of Chest Pneumonia with X-ray Images Based on Graph Reasoning

Author:

Wang Cheng1,Xu Chang1,Zhang Yulai1ORCID,Lu Peng2

Affiliation:

1. School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China

2. Institute of Computer Innovation Technology, Zhejiang University, Hangzhou 310023, China

Abstract

Pneumonia is an acute respiratory infection that affects the lungs. It is the single largest infectious disease that kills children worldwide. According to a 2019 World Health Organization survey, pneumonia caused 740,180 deaths in children under 5 years of age, accounting for 14% of all deaths in children under 5 years of age but 22% of all deaths in children aged 1 to 5 years. This shows that early recognition of pneumonia in children is particularly important. In this study, we propose a pneumonia binary classification model for chest X-ray image recognition based on a deep learning approach. We extract features using a traditional convolutional network framework to obtain features containing rich semantic information. The adjacency matrix is also constructed to represent the degree of relevance of each region in the image. In the final part of the model, we use graph inference to complete the global modeling to help classify pneumonia disease. A total of 6189 children’s X-ray films containing 3319 normal cases and 2870 pneumonia cases were used in the experiment. In total, 20% was selected as the test data set, and 11 common models were compared using 4 evaluation metrics, of which the accuracy rate reached 89.1% and the F1-score reached 90%, achieving the optimum.

Funder

Science & Technology Development Project of Hangzhou City

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting Pneumonia from X-Ray Images of Chest using Deep Convolutional Neural Network;2023 4th International Conference on Big Data Analytics and Practices (IBDAP);2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3