Estimating the Volume of Nodules and Masses on Serial Chest Radiography Using a Deep-Learning-Based Automatic Detection Algorithm: A Preliminary Study

Author:

Lim Chae Young1,Cha Yoon Ki1,Chung Myung Jin1,Park Subin2ORCID,Park Soyoung2ORCID,Woo Jung Han1,Kim Jong Hee1ORCID

Affiliation:

1. Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea

2. Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

Background: The purpose of this study was to assess the volume of the pulmonary nodules and masses on serial chest X-rays (CXRs) from deep-learning-based automatic detection algorithm (DLAD)-based parameters. Methods: In a retrospective single-institutional study, 72 patients, who obtained serial CXRs (n = 147) for pulmonary nodules or masses with corresponding chest CT images as the reference standards, were included. A pre-trained DLAD based on a convolutional neural network was developed to detect and localize nodules using 13,710 radiographs and to calculate a localization map and the derived parameters (e.g., the area and mean probability value of pulmonary nodules) for each CXR, including serial follow-ups. For validation, reference 3D CT volumes were measured semi-automatically. Volume prediction models for pulmonary nodules were established through univariable or multivariable, and linear or non-linear regression analyses with the parameters. A polynomial regression analysis was performed as a method of a non-linear regression model. Results: Of the 147 CXRs and 208 nodules of 72 patients, the mean volume of nodules or masses was measured as 9.37 ± 11.69 cm3 (mean ± standard deviation). The area and CT volume demonstrated a linear correlation of moderate strength (i.e., R = 0.58, RMSE: 9449.9 mm3 m3 in a linear regression analysis). The area and mean probability values exhibited a strong linear correlation (R = 0.73). The volume prediction performance based on a multivariable regression model was best with a mean probability and unit-adjusted area (i.e., RMSE: 7975.6 mm3, the smallest among the other variable parameters). Conclusions: The prediction model with the area and the mean probability based on the DLAD showed a rather accurate quantitative estimation of pulmonary nodule or mass volume and the change in serial CXRs.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3