Gestational Diabetes—Placental Expression of Human Equilibrative Nucleoside Transporter 1 (hENT1): Is Delayed Villous Maturation an Adaptive Pattern?

Author:

Giacometti Cinzia1ORCID,Ludwig Kathrin2ORCID,Guidi Monica3,Colantuono Elvira4,Coracina Anna5,Rigano Marcello4,Cassaro Mauro1,Ambrosi Alessandro6ORCID

Affiliation:

1. Pathology Unit, Department of Diagnostic Services, ULSS 6 “Euganea”, 35131 Padova, Italy

2. Pathology Unit, Department of Medicine, University of Padova, 35128 Padova, Italy

3. Gynecology & Obstretics Unit, Department of Women’s Health, Cittadella Hospital, ULSS 6 “Euganea”, 35013 Padova, Italy

4. Gynecology & Obstretics Unit, Department of Women’s Health, Camposampiero Hospital, ULSS 6 “Euganea”, 35012 Padova, Italy

5. Diabetology Unit, Department of Medicine, Camposampiero Hospital, ULSS 6 “Euganea”, 35012 Padova, Italy

6. School of Medicine, Vita-Salute San Raffaele University, 20132 Milano, Italy

Abstract

Gestational diabetes mellitus (GDM) is a metabolic disease that can affect placental villous maturation and villous vascularity. The main effects of GDM on placental growth are a delay of villous maturation (DVM) and decreased formation of vasculo-syncytial membranes (VSM). Human equilibrative nucleoside transporter-1 (hENT1) is an adenosine transporter expressed in the human umbilical vein endothelial cells (HUVEC) and human placental microvascular endothelium cells (hPMEC). Its role is crucial in maintaining physiological fetal adenosine levels during pregnancy, and its reduction has been described in GDM. Twenty-four placentas from pregnancies with a confirmed diagnosis of GDMd and twenty-four matched non-GDM placentas (controls) were retrospectively analyzed to investigate the immunohistochemical expression of hENT1 in HUVEC and hPMEC. The study included the quantitative evaluation of VSM/mm2 in placental tissue and the immunohistochemical quantitative evaluation of Ki-67, PHH3, and p57 in villous trophoblast. hENT1 expression was higher in all the vascular districts of the control cases compared to the GDMd placentas (p < 0.0001). The VSM/mm2 were lower in the GDMd cases, while the Ki-67, PHH3, and p57 were higher when compared to the control cases. To our knowledge, this is the first report of hENT1 expression in the human placentas of GDM patients. The absence/low expression of hENT1 in all the GDMd patients may indicate a potential role in microvascular adaptative mechanisms. The trophoblasts’ proliferative/antiapoptotic pattern (high Ki-67, high PHH3, and high p57 count) may explain the statistically significant lower number of VSM/mm2 found in the GDMd cases.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3