Morphology and Hemodynamics of Cerebral Arteries and Aneurysms in a Rare Pair of Monozygotic Twins

Author:

Yi Hang1ORCID,Yang Zifeng1ORCID,Bramlage Luke C.23,Ludwig Bryan R.23

Affiliation:

1. Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA

2. Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health—Clinical Neuroscience Institute, 30E Apple St., Dayton, OH 45409, USA

3. Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA

Abstract

In this preliminary study, the underlying pathophysiology mechanisms of cerebral aneurysms (CAs) in monozygotic twins (MTs) were investigated via a rare pair of MTs (twin A and twin B) involving four reconstructed arterial models using preclinical information. First, dimensions and configurated outlines of three-perspective geometries were compared. Adopting an in-vitro validated numerical CA model, hemodynamic characteristics were investigated in the MTs, respectively. Despite expected genetic similarities, morphological comparisons show that configurations of cerebral arteries exhibit significant differences between the twins. The ICA size of twin A is larger than that in twin B (2.23~25.86%), varying with specific locations, attributing to variations during embryological developments and environmental influences. Numerical modeling indicates the MTs have some hemodynamic similarities such as pressure distributions (~13,400 Pa) and their oscillatory shear index (OSI) (0~0.49), but present significant differences in local regions. Specifically, the difference in blood flow rate in the MTs is from 16% to 221%, varying with specifically compared arteries. The maximum time-averaged wall shear stress (53.6 Pa vs. 37.8 Pa) and different local OSI distributions were also observed between the MTs. The findings revealed that morphological variations in MTs could be generated by embryological and environmental factors, further influencing hemodynamic characteristics on CA pathophysiology.

Funder

Premier Health and Boonshoft School of Medicine Endowment Funding at Wright State University

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3