Image Guided Radiotherapy (IGRT) and Delta (Δ) Radiomics—An Urgent Alliance for the Front Line of the War against Head and Neck Cancers

Author:

Mireștean Camil Ciprian12ORCID,Iancu Roxana Irina34,Iancu Dragoș Petru Teodor56

Affiliation:

1. Department of Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania

2. Department of Surgery, Railways Clinical Hospital Iasi, 700506 Iași, Romania

3. Oral Pathology Department, “Gr. T. Popa” Faculty of Dental Medicine, University of Medicine and Pharmacy, 700115 Iași, Romania

4. Department of Clinical Laboratory, “St. Spiridon” Emergency Universitary Hospital, 700111 Iași, Romania

5. Oncology and Radiotherapy Department, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania

6. Department of Radiation Oncology, Regional Institute of Oncology, 700483 Iași, Romania

Abstract

The identification of a biomarker that is response predictive could offer a solution for the stratification of the treatment of head and neck cancers (HNC) in the context of high recurrence rates, especially those associated with loco-regional failure. Delta (Δ) radiomics, a concept based on the variation of parameters extracted from medical imaging using artificial intelligence (AI) algorithms, demonstrates its potential as a predictive biomarker of treatment response in HNC. The concept of image-guided radiotherapy (IGRT), including computer tomography simulation (CT) and position control imaging with cone-beam-computed tomography (CBCT), now offers new perspectives for radiomics applied in radiotherapy. The use of Δ features of texture, shape, and size, both from the primary tumor and from the tumor-involved lymph nodes, demonstrates the best predictive accuracy. If, in the case of treatment response, promising Δ radiomics results could be obtained, even after 24 h from the start of treatment, for radiation-induced xerostomia, the evaluation of Δ radiomics in the middle of treatment could be recommended. The fused models (clinical and Δ radiomics) seem to offer benefits, both in comparison to the clinical model and to the radiomic model. The selection of patients who benefit from induction chemotherapy is underestimated in Δ radiomic studies and may be an unexplored territory with major potential. The advantage offered by “in house” simulation CT and CBCT favors the rapid implementation of Δ radiomics studies in radiotherapy departments. Positron emission tomography (PET)-CT Δ radiomics could guide the new concepts of dose escalation on radio-resistant sub-volumes based on radiobiological criteria, but also guide the “next level” of HNC adaptive radiotherapy (ART).

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3