Characteristic Features of Infrared Thermographic Imaging in Primary Raynaud’s Phenomenon

Author:

Lindberg Lotte,Kristensen Bent,Thomsen Jane F.,Eldrup Ebbe,Jensen Lars T.ORCID

Abstract

Raynaud’s phenomenon (RP) is characterized by the episodic whitening of the fingers upon exposure to cold. Verification of the condition is crucial in vibration-exposed patients. The current verification method is outdated, but thermographic imaging seems promising as a diagnostic replacement. By investigating patients diagnosed with RP, the study aimed at developing a simple thermographic procedure that could be applied to future patients where verification of the diagnosis is needed. Twenty-two patients with primary RP and 58 healthy controls were examined using thermographic imaging after local cooling of the hands for 1 min in water of 10°C. A logistic regression model was fitted with the temperature curve characteristics to convey a predicted probability of having RP. The characteristics time to end temperature and baseline temperature were the most appropriate predictors of RP among those examined (p = 0.004 and p = 0.04, respectively). The area under the curve was 0.91. The cut-off level 0.46 yielded a sensitivity and specificity of 82% and 86%, respectively. The positive and negative predictive values were 69% and 93%, respectively. This newly developed thermographic method was able to distinguish between patients with RP and healthy controls and was easy to operate. Thus, the method showed great promise as a method for verification of RP in future patients. Trial registration: ClinicalTrials.gov NCT03094910.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3