The Role in Teledermoscopy of an Inexpensive and Easy-to-Use Smartphone Device for the Classification of Three Types of Skin Lesions Using Convolutional Neural Networks

Author:

Veronese FedericaORCID,Branciforti Francesco,Zavattaro ElisaORCID,Tarantino Vanessa,Romano Valentina,Meiburger Kristen M.ORCID,Salvi MassimoORCID,Seoni Silvia,Savoia PaolaORCID

Abstract

Background. The use of teledermatology has spread over the last years, especially during the recent SARS-Cov-2 pandemic. Teledermoscopy, an extension of teledermatology, consists of consulting dermoscopic images, also transmitted through smartphones, to remotely diagnose skin tumors or other dermatological diseases. The purpose of this work was to verify the diagnostic validity of images acquired with an inexpensive smartphone microscope (NurugoTM), employing convolutional neural networks (CNN) to classify malignant melanoma (MM), melanocytic nevus (MN), and seborrheic keratosis (SK). Methods. The CNN, trained with 600 dermatoscopic images from the ISIC (International Skin Imaging Collaboration) archive, was tested on three test sets: ISIC images, images acquired with the NurugoTM, and images acquired with a conventional dermatoscope. Results. The results obtained, although with some limitations due to the smartphone device and small data set, were encouraging, showing comparable results to the clinical dermatoscope and up to 80% accuracy (out of 10 images, two were misclassified) using the NurugoTM demonstrating how an amateur device can be used with reasonable levels of diagnostic accuracy. Conclusion. Considering the low cost and the ease of use, the NurugoTM device could be a useful tool for general practitioners (GPs) to perform the first triage of skin lesions, aiding the selection of lesions that require a face-to-face consultation with dermatologists.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3