Metasurface-Enhanced Antennas for Microwave Brain Imaging

Author:

Razzicchia EleonoraORCID,Lu PanORCID,Guo Wei,Karadima OlympiaORCID,Sotiriou IoannisORCID,Ghavami NavidORCID,Kallos Efthymios,Palikaras George,Kosmas PanagiotisORCID

Abstract

Stroke is a very frequent disorder and one of the major leading causes of death and disability worldwide. Timely detection of stroke is essential in order to select and perform the correct treatment strategy. Thus, the use of an efficient imaging method for an early diagnosis of this syndrome could result in an increased survival’s rate. Nowadays, microwave imaging (MWI) for brain stroke detection and classification has attracted growing interest due to its non-invasive and non-ionising properties. In this paper, we present a feasibility study with the goal of enhancing MWI for stroke detection using metasurface (MTS) loaded antennas. In particular, three MTS-enhanced antennas integrated in different brain scanners are presented. For the first two antennas, which operate in a coupling medium, we show experimental measurements on an elliptical brain-mimicking gel phantom including cylindrical targets representing the bleeding in haemorrhagic stroke (h-stroke) and the not oxygenated tissue in ischaemic stroke (i-stroke). The reconstructed images and transmission and reflection parameter plots show that the MTS loadings improve the performance of our imaging prototype. Specifically, the signal transmitted across our head model is indeed increased by several dB‘s over the desired frequency range of 0.5–2.0 GHz, and an improvement in the quality of the reconstructed images is shown when the MTS is incorporated in the system. We also present a detailed simulation study on the performance of a new printed square monopole antenna (PSMA) operating in air, enhanced by a MTS superstrate loading. In particular, our previous developed brain scanner operating in an infinite lossy matching medium is compared to two tomographic systems operating in air: an 8-PSMA system and an 8-MTS-enhanced PSMA system. Our results show that our MTS superstrate enhances the antennas’ return loss by around 5 dB and increases the signal difference due to the presence of a blood-mimicking target up to 25 dB, which leads to more accurate reconstructions. In conclusion, MTS structures may be a significant hardware advancement towards the development of functional and ergonomic MWI scanners for stroke detection.

Funder

Horizon 2020

Innovate UK

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3