Towards a Microwave Imaging System for Continuous Monitoring of Liver Tumor Ablation: Design and In Silico Validation of an Experimental Setup

Author:

Wang MengchuORCID,Scapaticci RosaORCID,Cavagnaro MartaORCID,Crocco LorenzoORCID

Abstract

Liver cancer is one of the most common liver malignancies worldwide. Thermal ablation has been recognized as a promising method for its treatment, with a significant impact on clinical practice. However, the treatment’s effectiveness is heavily dependent on the experience of the clinician and would improve if paired with an image-guidance device for treatment monitoring. Conventional imaging modalities, such as computed tomography, ultrasound, and magnetic resonance imaging, show some disadvantages, motivating interest in alternative technologies. In this framework, microwave imaging was recently proposed as a potential candidate, being capable of implementing real-time monitoring by means of low-cost and portable devices. In this work, the in silico assessment of a microwave imaging device specifically designed for liver ablation monitoring is presented. To this end, an imaging experiment involving eight Vivaldi antennas in an array configuration and a practically realizable liver phantom mimicking the evolving treatment was simulated. In particular, since the actual phantom will be realized by 3D printing technology, the effect of the plastic shells containing tissues mimicking materials was investigated and discussed. The outcomes of this study confirm that the presence of printing materials does not impair the significance of the experiments and that the designed device is capable of providing 3D images of the ablated region conveying information on its extent and evolution. Moreover, the observed results suggest possible improvements to the system, paving the way for the next stage in which the device will be implemented and experimentally assessed in the same conditions as those simulated in this study.

Funder

European Commission

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3