A Machine Learning Decision Support System (DSS) for Neuroendocrine Tumor Patients Treated with Somatostatin Analog (SSA) Therapy

Author:

Hasic Telalovic JasminkaORCID,Pillozzi SerenaORCID,Fabbri RacheleORCID,Laffi AliceORCID,Lavacchi Daniele,Rossi VirginiaORCID,Dreoni LorenzoORCID,Spada FrancescaORCID,Fazio NicolaORCID,Amedei AmedeoORCID,Iadanza ErnestoORCID,Antonuzzo Lorenzo

Abstract

The application of machine learning (ML) techniques could facilitate the identification of predictive biomarkers of somatostatin analog (SSA) efficacy in patients with neuroendocrine tumors (NETs). We collected data from 74 patients with a pancreatic or gastrointestinal NET who received SSA as first-line therapy. We developed three classification models to predict whether the patient would experience a progressive disease (PD) after 12 or 18 months based on clinic-pathological factors at the baseline. The dataset included 70 samples and 15 features. We initially developed three classification models with accuracy ranging from 55% to 70%. We then compared ten different ML algorithms. In all but one case, the performance of the Multinomial Naïve Bayes algorithm (80%) was the highest. The support vector machine classifier (SVC) had a higher performance for the recall metric of the progression-free outcome (97% vs. 94%). Overall, for the first time, we documented that the factors that mainly influenced progression-free survival (PFS) included age, the number of metastatic sites and the primary site. In addition, the following factors were also isolated as important: adverse events G3–G4, sex, Ki67, metastatic site (liver), functioning NET, the primary site and the stage. In patients with advanced NETs, ML provides a predictive model that could potentially be used to differentiate prognostic groups and to identify patients for whom SSA therapy as a single agent may not be sufficient to achieve a long-lasting PFS.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3