Automated CT Lung Density Analysis of Viral Pneumonia and Healthy Lungs Using Deep Learning-Based Segmentation, Histograms and HU Thresholds

Author:

Romanov AndrejORCID,Bach Michael,Yang Shan,Franzeck Fabian C.,Sommer GregorORCID,Anastasopoulos ConstantinORCID,Bremerich Jens,Stieltjes BramORCID,Weikert ThomasORCID,Sauter Alexander Walter

Abstract

CT patterns of viral pneumonia are usually only qualitatively described in radiology reports. Artificial intelligence enables automated and reliable segmentation of lungs with chest CT. Based on this, the purpose of this study was to derive meaningful imaging biomarkers reflecting CT patterns of viral pneumonia and assess their potential to discriminate between healthy lungs and lungs with viral pneumonia. This study used non-enhanced and CT pulmonary angiograms (CTPAs) of healthy lungs and viral pneumonia (SARS-CoV-2, influenza A/B) identified by radiology reports and RT-PCR results. After deep learning segmentation of the lungs, histogram-based and threshold-based analyses of lung attenuation were performed and compared. The derived imaging biomarkers were correlated with parameters of clinical and biochemical severity (modified WHO severity scale; c-reactive protein). For non-enhanced CTs (n = 526), all imaging biomarkers significantly differed between healthy lungs and lungs with viral pneumonia (all p < 0.001), a finding that was not reproduced for CTPAs (n = 504). Standard deviation (histogram-derived) and relative high attenuation area [600–0 HU] (HU-thresholding) differed most. The strongest correlation with disease severity was found for absolute high attenuation area [600–0 HU] (r = 0.56, 95% CI = 0.46–0.64). Deep-learning segmentation-based histogram and HU threshold analysis could be deployed in chest CT evaluation for the differentiating of healthy lungs from AP lungs.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3