Minimal Cardinality Diagnosis in Problems with Multiple Observations

Author:

Kalech MeirORCID,Stern Roni,Lazebnik Ester

Abstract

Model-Based Diagnosis (MBD) is a well-known approach to diagnosis in medical domains. In this approach, the behavior of a system is modeled and used to identify faulty components, i.e., once a symptom of abnormal behavior is observed, an inference algorithm is run on the system model and returns possible explanations. Such explanations are referred to as diagnoses. A diagnosis is an assumption about which set of components are faulty and have caused the abnormal behavior. In this work, we focus on the case where multiple observations are available to the diagnoser, collected at different times, such that some of these observations exhibit symptoms of abnormal behavior. MBD with multiple observations is challenging because some components may fail intermittently, i.e., behave abnormally in one observation and behave normally in another, while other components may fail all the time (non-intermittently). Inspired by recent success in solving classical diagnosis problems using Boolean satisfiability (SAT) solvers, we describe two SAT-based approaches to solve this MBD with multiple observations problem. The first approach compiles the problem to a single SAT formula, and the second approach solves each observation independently and then merges them together. We compare these two approaches experimentally on a standard diagnosis benchmark and analyze their pros and cons.

Funder

Israel Science Foundation

Ministry of Science and Technology, Israel

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3