Revolutionizing Bladder Health: Artificial-Intelligence-Powered Automatic Measurement of Bladder Volume Using Two-Dimensional Ultrasound

Author:

Alpert Evan Avraham12ORCID,Gold Daniel David12ORCID,Kobliner-Friedman Deganit1,Wagner Michael3,Dadon Ziv24ORCID

Affiliation:

1. Department of Emergency Medicine, Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9112001, Israel

2. Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel

3. Division of Hospital Medicine, Department of Medicine, Prisma Health Greenville Memorial Hospital, 701 Grove Rd, Greenville, SC 29605, USA

4. Jesselson Integrated Heart Center, Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9112001, Israel

Abstract

Introduction: Measuring elevated post-void residual volume is important for diagnosing urinary outflow tract obstruction and cauda equina syndrome. Catheter placement is exact but painful, invasive, and may cause infection, whereas an ultrasound is accurate, painless, and safe. Aim: The purpose of this single-center study is to evaluate the accuracy of a module for artificial-intelligence (AI)-based fully automated bladder volume (BV) prospective measurement using two-dimensional ultrasound images, as compared with manual measurement by expert sonographers. Methods: Pairs of transverse and longitudinal bladder images were obtained from patients evaluated in an urgent care clinic. The scans were prospectively analyzed by the automated module using the prolate ellipsoid method. The same examinations were manually measured by a blinded expert sonographer. The two methods were compared using the Pearson correlation, kappa coefficients, and the Bland–Altman method. Results: A total of 111 pairs of transverse and longitudinal views were included. A very strong correlation was found between the manual BV measurements and the AI-based module with r = 0.97 [95% CI: 0.96–0.98]. The specificity and sensitivity for the diagnosis of an elevated post-void residual volume using a threshold ≥200 mL were 1.00 and 0.82, respectively. An almost-perfect agreement between manual and automated methods was obtained (kappa = 0.85). Perfect reproducibility was found for both inter- and intra-observer agreements. Conclusion: This AI-based module provides an accurate automated measurement of the BV based on ultrasound images. This novel method demonstrates a very strong correlation with the gold standard, making it a potentially valuable decision-support tool for non-experts in acute settings.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3