Cross-Modality Medical Image Segmentation via Enhanced Feature Alignment and Cross Pseudo Supervision Learning

Author:

Yang Mingjing1ORCID,Wu Zhicheng1,Zheng Hanyu1,Huang Liqin1ORCID,Ding Wangbin2,Pan Lin1ORCID,Yin Lei345

Affiliation:

1. College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China

2. School of Medical Imaging, Fujian Medical University, Fuzhou 350122, China

3. The Departments of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China

4. Fujian Provincial Hospital, Fuzhou 350001, China

5. Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China

Abstract

Given the diversity of medical images, traditional image segmentation models face the issue of domain shift. Unsupervised domain adaptation (UDA) methods have emerged as a pivotal strategy for cross modality analysis. These methods typically utilize generative adversarial networks (GANs) for both image-level and feature-level domain adaptation through the transformation and reconstruction of images, assuming the features between domains are well-aligned. However, this assumption falters with significant gaps between different medical image modalities, such as MRI and CT. These gaps hinder the effective training of segmentation networks with cross-modality images and can lead to misleading training guidance and instability. To address these challenges, this paper introduces a novel approach comprising a cross-modality feature alignment sub-network and a cross pseudo supervised dual-stream segmentation sub-network. These components work together to bridge domain discrepancies more effectively and ensure a stable training environment. The feature alignment sub-network is designed for the bidirectional alignment of features between the source and target domains, incorporating a self-attention module to aid in learning structurally consistent and relevant information. The segmentation sub-network leverages an enhanced cross-pseudo-supervised loss to harmonize the output of the two segmentation networks, assessing pseudo-distances between domains to improve the pseudo-label quality and thus enhancing the overall learning efficiency of the framework. This method’s success is demonstrated by notable advancements in segmentation precision across target domains for abdomen and brain tasks.

Funder

National Natural Science Foundation of China

Fuzhou Science and Technology Planning Project

Fujian Provincial Science and Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3