Abstract
The growing incidence of skin cancer makes computer-aided diagnosis tools for this group of diseases increasingly important. The use of ultrasound has the potential to complement information from optical dermoscopy. The current work presents a fully automatic classification framework utilizing fully-automated (FA) segmentation and compares it with classification using two semi-automated (SA) segmentation methods. Ultrasound recordings were taken from a total of 310 lesions (70 melanoma, 130 basal cell carcinoma and 110 benign nevi). A support vector machine (SVM) model was trained on 62 features, with ten-fold cross-validation. Six classification tasks were considered, namely all the possible permutations of one class versus one or two remaining classes. The receiver operating characteristic (ROC) area under the curve (AUC) as well as the accuracy (ACC) were measured. The best classification was obtained for the classification of nevi from cancerous lesions (melanoma, basal cell carcinoma), with AUCs of over 90% and ACCs of over 85% obtained with all segmentation methods. Previous works have either not implemented FA ultrasound-based skin cancer classification (making diagnosis more lengthy and operator-dependent), or are unclear in their classification results. Furthermore, the current work is the first to assess the effect of implementing FA instead of SA classification, with FA classification never degrading performance (in terms of AUC or ACC) by more than 5%.
Funder
Pázmány Péter Catholic University
European Union
Reference62 articles.
1. American Cancer Society, Cancer Facts & Figures 2021
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2021/cancer-facts-and-figures-2021.pdf
2. Epidemiological trends in skin cancer
3. Dermatologist-level classification of skin cancer with deep neural networks
4. Identifying Melanoma Images using EfficientNet Ensemble: Winning Solution to the SIIM-ISIC Melanoma Classification Challenge;Ha;arXiv,2020
5. Diagnostics of Melanocytic Skin Tumours by a Combination of Ultrasonic, Dermatoscopic and Spectrophotometric Image Parameters
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献