Artificial Intelligence for 3D Reconstruction from 2D Panoramic X-rays to Assess Maxillary Impacted Canines

Author:

Minhas Sumeet1,Wu Tai-Hsien1ORCID,Kim Do-Gyoon1ORCID,Chen Si2,Wu Yi-Chu3ORCID,Ko Ching-Chang1

Affiliation:

1. Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH 43210, USA

2. Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100082, China

3. Division of Periodontology, The Ohio State University College of Dentistry, Columbus, OH 43210, USA

Abstract

The objective of this study was to explore the feasibility of current 3D reconstruction in assessing the position of maxillary impacted canines from 2D panoramic X-rays. A dataset was created using pre-treatment CBCT data from a total of 123 patients, comprising 74 patients with impacted canines and 49 patients without impacted canines. From all 74 subjects, we generated a dataset containing paired 2D panoramic X-rays and pseudo-3D images. This pseudo-3D image contained information about the location of the impacted canine in the buccal/lingual, mesial/distal, and apical/coronal positions. These data were utilized to train a deep-learning reconstruction algorithm, a generative AI. The location of the crown of the maxillary impacted canine was determined based on the output of the algorithm. The reconstruction was evaluated using the structure similarity index measure (SSIM) as a metric to indicate the quality of the reconstruction. The prediction of the impacted canine’s location was assessed in both the mesiodistal and buccolingual directions. The reconstruction algorithm predicts the position of the impacted canine in the buccal, middle, or lingual position with 41% accuracy, while the mesial and distal positions are predicted with 55% accuracy. The mean SSIM for the output is 0.71, with a range of 0.63 to 0.84. Our study represents the first application of AI reconstruction output for multidisciplinary care involving orthodontists, periodontists, and maxillofacial surgeons in diagnosing and treating maxillary impacted canines. Further development of deep-learning algorithms is necessary to enhance the robustness of dental reconstruction applications.

Funder

Ohio State University College of Dentistry

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3