Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs involved in the regulation of gene expression and the control of several cellular processes at physiological and pathological levels. Furthermore, extracellular vesicles (EV), which are small membrane-bound vesicles secreted by cells in the extracellular environment, contain functional miRNAs. The remarkable deregulation of many miRNAs has been demonstrated in respiratory diseases. Among them, miR-206, miR-133a-5p, and miR-133a-3p are striated muscle-specific miRNAs (myo-miRNA), related to skeletal muscle dysfunction, one of the commonest systemic manifestations in patients with chronic obstructive pulmonary disease (COPD). Nevertheless, their circulating expression in COPD patients is not demonstrated. For these reasons, we performed a pilot study to analyze the expression profiles of myo-miRNAs in plasma-derived EV from patients with COPD. We analyzed the expression profiles of selected myo-miRNAs in plasma-derived EV from COPD. Receiver operating characteristic analyses were carried out to evaluate whether selected plasma miRNAs were able to discriminate between different groups of COPD patients. We found EV-embedded myo-miRNAs in the bloodstream of COPD patients. Specifically, miR-206, miR-133a-5p and miR-133a-3p were significantly upregulated in group B patients. Receiver operating characteristic analyses of the combination of these selected miRNAs showed their high capacity to discriminate group B from other COPD patients. Our data provide evidence that myo-miRNA are present in EV in the plasma of COPD patients and their expression (miR-206, miR-133a-5p, and miR-133a-3p) can discriminate group B from group C patients. The future analysis of a larger number of patients should allow us to obtain more refined correlations.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献