A Novel Approach to Dual Feature Selection of Atrial Fibrillation Based on HC-MFS

Author:

Liu Hong12,Lu Lifeng1,Xiong Honglin34,Fan Chongjun1,Fan Lumin1,Lin Ziqian1,Zhang Hongliu1

Affiliation:

1. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Chongming Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 202150, China

3. Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China

4. Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200030, China

Abstract

This investigation sought to discern the risk factors for atrial fibrillation within Shanghai’s Chongming District, analyzing data from 678 patients treated at a tertiary hospital in Chongming District, Shanghai, from 2020 to 2023, collecting information on season, C-reactive protein, hypertension, platelets, and other relevant indicators. The researchers introduced a novel dual feature-selection methodology, combining hierarchical clustering with Fisher scores (HC-MFS), to benchmark against four established methods. Through the training of five classification models on a designated dataset, the most effective model was chosen for method performance evaluation, with validation confirmed by test set scores. Impressively, the HC-MFS approach achieved the highest accuracy and the lowest root mean square error in the classification model, at 0.9118 and 0.2970, respectively. This provides a higher performance compared to existing methods, thanks to the combination and interaction of the two methods, which improves the quality of the feature subset. The research identified seasonal changes that were strongly associated with atrial fibrillation (pr = 0.31, FS = 0.11, and DCFS = 0.33, ranked first in terms of correlation); LDL cholesterol, total cholesterol, C-reactive protein, and platelet count, which are associated with inflammatory response and coronary heart disease, also indirectly contribute to atrial fibrillation and are risk factors for AF. Conclusively, this study advocates that machine-learning models can significantly aid clinicians in diagnosing individuals predisposed to atrial fibrillation, which shows a strong correlation with both pathological and climatic elements, especially seasonal variations, in the Chongming District.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3