FOT Technique Applied for Monitoring of COVID-19 Pneumonia Reveals Small Airways Involvement

Author:

Taivans Immanuels1,Grima Laura1,Jurka Normunds1,Zvaigzne Ligita2,Gordjušina Valentina1,Strazda Gunta1

Affiliation:

1. Medical Faculty, University of Latvia, LV1050 Riga, Latvia

2. P. Stradiņš University Hospital, LV1002 Riga, Latvia

Abstract

The fact that some SARS-CoV-2 pneumonia patients benefit from changing body position, and some from continuous positive airways pressure (CPAP), indicates the functional character of hypoxia. We hypothesize that such effects could be explained by the closure of small airways. To prove the hypothesis, we evaluated the patency of small airways in 30 oxygen-dependent, spontaneously breathing patients with SARS-CoV-2 pneumonia during their hospital stay using the FOT method and then compared the results with data obtained three months later. During the acute period, total resistance (R5) and peripheral resistance (R5-20) rose above the upper limit of normal (ULN) in 28% and 50% of all patients, respectively. Reactance indices X5, AX and Fres exceeded ULN in 55%, 68% and 66% of cases. Significant correlations were observed between PaO2/FiO2, the time spent in the hospital and R5, X5, AX and Fres. After 3 months, 18 patients were re-examined. During the hospital stay, 11 of them had risen above the upper limit of normal (ULN), for both resistance (R5-20) and reactance (X5, AX) values. Three months later, ULN for R5-20 was exceeded in only four individuals, but ULN for X5 and AX was exceeded in five individuals. Lung function examination revealed a combined restrictive/obstructive ventilatory failure and reduced CO transfer factor. We interpret these changes as lung tissue remodeling due to the process of fibrosis. We conclude that during acute period of SARS-CoV-2 pneumonia, dilated pulmonary blood vessels and parenchymal oedema induce functional closure of small airways, which in turn induce atelectasis with pulmonary right-to-left shunting, followed by the resulting hypoxemia.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3