A Comprehensive Study on a Deep-Learning-Based Electrocardiography Analysis for Estimating the Apnea-Hypopnea Index

Author:

Kim Seola1ORCID,Choi Hyun-Soo12ORCID,Kim Dohyun13ORCID,Kim Minkyu1,Lee Seo-Young45,Kim Jung-Kyeom5ORCID,Kim Yoon6ORCID,Lee Woo Hyun7ORCID

Affiliation:

1. Ziovision Inc., Chuncheon 24341, Republic of Korea

2. Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

3. Department of Computer and Communications Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea

4. Department of Neurology, Kangwon National University Hospital, College of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea

5. Interdisciplinary Graduate Program in Medical Bigdata Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea

6. Department of Computer Science and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea

7. Department of Otolaryngology, Kangwon National University Hospital, College of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea

Abstract

This study introduces a deep-learning-based automatic sleep scoring system to detect sleep apnea using a single-lead electrocardiography (ECG) signal, focusing on accurately estimating the apnea–hypopnea index (AHI). Unlike other research, this work emphasizes AHI estimation, crucial for the diagnosis and severity evaluation of sleep apnea. The suggested model, trained on 1465 ECG recordings, combines the deep-shallow fusion network for sleep apnea detection network (DSF-SANet) and gated recurrent units (GRUs) to analyze ECG signals at 1-min intervals, capturing sleep-related respiratory disturbances. Achieving a 0.87 correlation coefficient with actual AHI values, an accuracy of 0.82, an F1 score of 0.71, and an area under the receiver operating characteristic curve of 0.88 for per-segment classification, our model was effective in identifying sleep-breathing events and estimating the AHI, offering a promising tool for medical professionals.

Funder

Ministry of Science and ICT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3