Comparing Measurements of Vascular Diameter Using Adaptative Optics Imaging and Conventional Fundus Imaging

Author:

Mautuit Thibaud,Semecas Rachel,Hogg Stephen,Daien Vincent,Gavard Olivier,Chateau Nicolas,MacGillivray Tom,Trucco Emanuele,Chiquet ChristopheORCID

Abstract

The aim of this prospective study was to compare retinal vascular diameter measurements taken from standard fundus images and adaptive optics (AO) images. We analysed retinal images of twenty healthy subjects with 45-degree funduscopic colour photographs (CR-2 Canon fundus camera, Canon™) and adaptive optics (AO) fundus images (rtx1 camera, Imagine Eyes®). Diameters were measured using three software applications: the VAMPIRE (Vessel Assessment and Measurement Platform for Images of the REtina) annotation tool, IVAN (Interactive Vessel ANalyzer) for funduscopic colour photographs, and AO_Detect_Artery™ for AO images. For the arterial diameters, the mean difference between AO_Detect_Artery™ and IVAN was 9.1 µm (−27.4 to 9.2 µm, p = 0.005) and the measurements were significantly correlated (r = 0.79). The mean difference between AO_Detect_Artery™ and VAMPIRE annotation tool was 3.8 µm (−34.4 to 26.8 µm, p = 0.16) and the measurements were poorly correlated (r = 0.12). For the venous diameters, the mean difference between the AO_Detect_Artery™ and IVAN was 3.9 µm (−40.9 to 41.9 µm, p = 0.35) and the measurements were highly correlated (r = 0.83). The mean difference between the AO_Detect_Artery™ and VAMPIRE annotation tool was 0.4 µm (−17.44 to 25.3 µm, p = 0.91) and the correlations were moderate (r = 0.41). We found that the VAMPIRE annotation tool, an entirely manual software, is accurate for the measurement of arterial and venular diameters, but the correlation with AO measurements is poor. On the contrary, IVAN, a semi-automatic software tool, presents slightly greater differences with AO imaging, but the correlation is stronger. Data from arteries should be considered with caution, since IVAN seems to significantly under-estimate arterial diameters.

Funder

ARFO

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3