Analysis of Line and Tube Detection Performance of a Chest X-ray Deep Learning Model to Evaluate Hidden Stratification

Author:

Tang Cyril H. M.12,Seah Jarrel C. Y.13ORCID,Ahmad Hassan K.1,Milne Michael R.1,Wardman Jeffrey B.1,Buchlak Quinlan D.145,Esmaili Nazanin46,Lambert John F.1,Jones Catherine M.1789

Affiliation:

1. Annalise.ai, Sydney, NSW 2000, Australia

2. Intensive Care Unit, Gosford Hospital, Sydney, NSW 2250, Australia

3. Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia

4. School of Medicine, The University of Notre Dame Australia, Sydney, NSW 2007, Australia

5. Department of Neurosurgery, Monash Health, Melbourne, VIC 3168, Australia

6. Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia

7. I-MED Radiology Network, Brisbane, QLD 4006, Australia

8. School of Public and Preventive Health, Monash University, Clayton, VIC 3800, Australia

9. Department of Clinical Imaging Science, University of Sydney, Sydney, NSW 2006, Australia

Abstract

This retrospective case-control study evaluated the diagnostic performance of a commercially available chest radiography deep convolutional neural network (DCNN) in identifying the presence and position of central venous catheters, enteric tubes, and endotracheal tubes, in addition to a subgroup analysis of different types of lines/tubes. A held-out test dataset of 2568 studies was sourced from community radiology clinics and hospitals in Australia and the USA, and was then ground-truth labelled for the presence, position, and type of line or tube from the consensus of a thoracic specialist radiologist and an intensive care clinician. DCNN model performance for identifying and assessing the positioning of central venous catheters, enteric tubes, and endotracheal tubes over the entire dataset, as well as within each subgroup, was evaluated. The area under the receiver operating characteristic curve (AUC) was assessed. The DCNN algorithm displayed high performance in detecting the presence of lines and tubes in the test dataset with AUCs > 0.99, and good position classification performance over a subpopulation of ground truth positive cases with AUCs of 0.86–0.91. The subgroup analysis showed that model performance was robust across the various subtypes of lines or tubes, although position classification performance of peripherally inserted central catheters was relatively lower. Our findings indicated that the DCNN algorithm performed well in the detection and position classification of lines and tubes, supporting its use as an assistant for clinicians. Further work is required to evaluate performance in rarer scenarios, as well as in less common subgroups.

Funder

Annalise.ai

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3