SAA-UNet: Spatial Attention and Attention Gate UNet for COVID-19 Pneumonia Segmentation from Computed Tomography

Author:

Alshomrani Shroog1ORCID,Arif Muhammad1ORCID,Al Ghamdi Mohammed A.1ORCID

Affiliation:

1. Department of Computer Science, Umm Al-Qura University, Makkah 24382, Saudi Arabia

Abstract

The disaster of the COVID-19 pandemic has claimed numerous lives and wreaked havoc on the entire world due to its transmissible nature. One of the complications of COVID-19 is pneumonia. Different radiography methods, particularly computed tomography (CT), have shown outstanding performance in effectively diagnosing pneumonia. In this paper, we propose a spatial attention and attention gate UNet model (SAA-UNet) inspired by spatial attention UNet (SA-UNet) and attention UNet (Att-UNet) to deal with the problem of infection segmentation in the lungs. The proposed method was applied to the MedSeg, Radiopaedia 9P, combination of MedSeg and Radiopaedia 9P, and Zenodo 20P datasets. The proposed method showed good infection segmentation results (two classes: infection and background) with an average Dice similarity coefficient of 0.85, 0.94, 0.91, and 0.93 and a mean intersection over union (IOU) of 0.78, 0.90, 0.86, and 0.87, respectively, on the four datasets mentioned above. Moreover, it also performed well in multi-class segmentation with average Dice similarity coefficients of 0.693, 0.89, 0.87, and 0.93 and IOU scores of 0.68, 0.87, 0.78, and 0.89 on the four datasets, respectively. Classification accuracies of more than 97% were achieved for all four datasets. The F1-scores for the MedSeg, Radiopaedia P9, combination of MedSeg and Radiopaedia P9, and Zenodo 20P datasets were 0.865, 0.943, 0.917, and 0.926, respectively, for the binary classification. For multi-class classification, accuracies of more than 96% were achieved on all four datasets. The experimental results showed that the framework proposed can effectively and efficiently segment COVID-19 infection on CT images with different contrast and utilize this to aid in diagnosing and treating pneumonia caused by COVID-19.

Funder

Umm Al-Qura University, Makkah City, Saudi Arabia

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference66 articles.

1. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle;Lu;J. Med. Virol.,2020

2. World Health Organization (2021, August 30). Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV). Available online: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov).

3. A review of coronavirus disease-2019 (COVID-19);Singhal;Indian J. Pediatr.,2020

4. World Health Organization (2021, August 30). WHO Director-General’s Remarks at the Media Briefing on 2019-nCoV on 11 February 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020.

5. Ahmed, S.F., Quadeer, A.A., and McKay, M.R. (2020). Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 12.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3