A New Deep-Learning-Based Model for Breast Cancer Diagnosis from Medical Images

Author:

Zakareya Salman1,Izadkhah Habib12ORCID,Karimpour Jaber1

Affiliation:

1. Department of Computer Science, University of Tabriz, Tabriz 5166616471, Iran

2. Research Department of Computational Algorithms and Mathematical Models, University of Tabriz, Tabriz 5166616471, Iran

Abstract

Breast cancer is one of the most prevalent cancers among women worldwide, and early detection of the disease can be lifesaving. Detecting breast cancer early allows for treatment to begin faster, increasing the chances of a successful outcome. Machine learning helps in the early detection of breast cancer even in places where there is no access to a specialist doctor. The rapid advancement of machine learning, and particularly deep learning, leads to an increase in the medical imaging community’s interest in applying these techniques to improve the accuracy of cancer screening. Most of the data related to diseases is scarce. On the other hand, deep-learning models need much data to learn well. For this reason, the existing deep-learning models on medical images cannot work as well as other images. To overcome this limitation and improve breast cancer classification detection, inspired by two state-of-the-art deep networks, GoogLeNet and residual block, and developing several new features, this paper proposes a new deep model to classify breast cancer. Utilizing adopted granular computing, shortcut connection, two learnable activation functions instead of traditional activation functions, and an attention mechanism is expected to improve the accuracy of diagnosis and consequently decrease the load on doctors. Granular computing can improve diagnosis accuracy by capturing more detailed and fine-grained information about cancer images. The proposed model’s superiority is demonstrated by comparing it to several state-of-the-art deep models and existing works using two case studies. The proposed model achieved an accuracy of 93% and 95% on ultrasound images and breast histopathology images, respectively.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3