Exploring the Utility of Cardiovascular Magnetic Resonance Radiomic Feature Extraction for Evaluation of Cardiac Sarcoidosis

Author:

Mushari Nouf A.1ORCID,Soultanidis Georgios2,Duff Lisa13,Trivieri Maria G.24ORCID,Fayad Zahi A.2,Robson Philip M.2,Tsoumpas Charalampos125ORCID

Affiliation:

1. Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK

2. BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

3. Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK

4. Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

5. Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, 9713 Groningen, The Netherlands

Abstract

Background: The aim of this study is to explore the utility of cardiac magnetic resonance (CMR) imaging of radiomic features to distinguish active and inactive cardiac sarcoidosis (CS). Methods: Subjects were classified into active cardiac sarcoidosis (CSactive) and inactive cardiac sarcoidosis (CSinactive) based on PET-CMR imaging. CSactive was classified as featuring patchy [18F]fluorodeoxyglucose ([18F]FDG) uptake on PET and presence of late gadolinium enhancement (LGE) on CMR, while CSinactive was classified as featuring no [18F]FDG uptake in the presence of LGE on CMR. Among those screened, thirty CSactive and thirty-one CSinactive patients met these criteria. A total of 94 radiomic features were subsequently extracted using PyRadiomics. The values of individual features were compared between CSactive and CSinactive using the Mann–Whitney U test. Subsequently, machine learning (ML) approaches were tested. ML was applied to two sub-sets of radiomic features (signatures A and B) that were selected by logistic regression and PCA, respectively. Results: Univariate analysis of individual features showed no significant differences. Of all features, gray level co-occurrence matrix (GLCM) joint entropy had a good area under the curve (AUC) and accuracy with the smallest confidence interval, suggesting it may be a good target for further investigation. Some ML classifiers achieved reasonable discrimination between CSactive and CSinactive patients. With signature A, support vector machine and k-neighbors showed good performance with AUC (0.77 and 0.73) and accuracy (0.67 and 0.72), respectively. With signature B, decision tree demonstrated AUC and accuracy around 0.7; Conclusion: CMR radiomic analysis in CS provides promising results to distinguish patients with active and inactive disease.

Funder

Taif University, Saudi Arabia

NIH

EPSRC Centre for Doctoral Training in Tissue Engineering and Regenerative Medicine: Innovation in Medical and Biological Engineering

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3