Automated Skeletal Bone Age Assessment with Two-Stage Convolutional Transformer Network Based on X-ray Images

Author:

Mao Xiongwei12ORCID,Hui Qinglei3ORCID,Zhu Siyu4,Du Wending4,Qiu Chenhui3,Ouyang Xiaoping5,Kong Dexing3ORCID

Affiliation:

1. Department of Radiology, Zhejiang University Hospital, Zhejiang University, Hangzhou 310027, China

2. Department of Radiology, Zhejiang University Hospital District, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China

3. School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

4. Zhejiang Qiushi Institute for Mathematical Medicine, Hangzhou 311121, China

5. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

Human skeletal development is continuous and staged, and different stages have various morphological characteristics. Therefore, bone age assessment (BAA) can accurately reflect the individual’s growth and development level and maturity. Clinical BAA is time consuming, highly subjective, and lacks consistency. Deep learning has made considerable progress in BAA in recent years by effectively extracting deep features. Most studies use neural networks to extract global information from input images. However, clinical radiologists are highly concerned about the ossification degree in some specific regions of the hand bones. This paper proposes a two-stage convolutional transformer network to improve the accuracy of BAA. Combined with object detection and transformer, the first stage mimics the bone age reading process of the pediatrician, extracts the hand bone region of interest (ROI) in real time using YOLOv5, and proposes hand bone posture alignment. In addition, the previous information encoding of biological sex is integrated into the feature map to replace the position token in the transformer. The second stage extracts features within the ROI by window attention, interacts between different ROIs by shifting the window attention to extract hidden feature information, and penalizes the evaluation results using a hybrid loss function to ensure its stability and accuracy. The proposed method is evaluated on the data from the Pediatric Bone Age Challenge organized by the Radiological Society of North America (RSNA). The experimental results show that the proposed method achieves a mean absolute error (MAE) of 6.22 and 4.585 months on the validation and testing sets, respectively, and the cumulative accuracy within 6 and 12 months reach 71% and 96%, respectively, which is comparable to the state of the art, markedly reducing the clinical workload and realizing rapid, automatic, and high-precision assessment.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3