On the Use of a Convolutional Block Attention Module in Deep Learning-Based Human Activity Recognition with Motion Sensors

Author:

Agac Sumeyye1ORCID,Durmaz Incel Ozlem1ORCID

Affiliation:

1. Department of Computer Engineering, Bogazici University, Istanbul 34342, Turkey

Abstract

Sensor-based human activity recognition with wearable devices has captured the attention of researchers in the last decade. The possibility of collecting large sets of data from various sensors in different body parts, automatic feature extraction, and aiming to recognize more complex activities have led to a rapid increase in the use of deep learning models in the field. More recently, using attention-based models for dynamically fine-tuning the model features and, in turn, improving the model performance has been investigated. However, the impact of using channel, spatial, or combined attention methods of the convolutional block attention module (CBAM) on the high-performing DeepConvLSTM model, a hybrid model proposed for sensor-based human activity recognition, has yet to be studied. Additionally, since wearables have limited resources, analysing the parameter requirements of attention modules can serve as an indicator for optimizing resource consumption. In this study, we explored the performance of CBAM on the DeepConvLSTM architecture both in terms of recognition performance and the number of additional parameters required by attention modules. In this direction, the effect of channel and spatial attention, individually and in combination, were examined. To evaluate the model performance, the Pamap2 dataset containing 12 daily activities and the Opportunity dataset with its 18 micro activities were utilized. The results showed that the performance for Opportunity increased from 0.74 to 0.77 in the macro f1-score owing to spatial attention, while for Pamap2, the performance increased from 0.95 to 0.96 owing to the channel attention applied to DeepConvLSTM with a negligible number of additional parameters. Moreover, when the activity-based results were analysed, it was observed that the attention mechanism increased the performance of the activities with the worst performance in the baseline model without attention. We present a comparison with related studies that use the same datasets and show that we could achieve higher scores on both datasets by combining CBAM and DeepConvLSTM.

Funder

Bogazici University Research Fund

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3