A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data

Author:

Chang Wenbing,Liu YinglaiORCID,Xiao YiyongORCID,Yuan Xinglong,Xu XingxingORCID,Zhang SiyueORCID,Zhou ShenghanORCID

Abstract

The outcomes of hypertension refer to the death or serious complications (such as myocardial infarction or stroke) that may occur in patients with hypertension. The outcomes of hypertension are very concerning for patients and doctors, and are ideally avoided. However, there is no satisfactory method for predicting the outcomes of hypertension. Therefore, this paper proposes a prediction method for outcomes based on physical examination indicators of hypertension patients. In this work, we divide the patients’ outcome prediction into two steps. The first step is to extract the key features from the patients’ many physical examination indicators. The second step is to use the key features extracted from the first step to predict the patients’ outcomes. To this end, we propose a model combining recursive feature elimination with a cross-validation method and classification algorithm. In the first step, we use the recursive feature elimination algorithm to rank the importance of all features, and then extract the optimal features subset using cross-validation. In the second step, we use four classification algorithms (support vector machine (SVM), C4.5 decision tree, random forest (RF), and extreme gradient boosting (XGBoost)) to accurately predict patient outcomes by using their optimal features subset. The selected model prediction performance evaluation metrics are accuracy, F1 measure, and area under receiver operating characteristic curve. The 10-fold cross-validation shows that C4.5, RF, and XGBoost can achieve very good prediction results with a small number of features, and the classifier after recursive feature elimination with cross-validation feature selection has better prediction performance. Among the four classifiers, XGBoost has the best prediction performance, and its accuracy, F1, and area under receiver operating characteristic curve (AUC) values are 94.36%, 0.875, and 0.927, respectively, using the optimal features subset. This article’s prediction of hypertension outcomes contributes to the in-depth study of hypertension complications and has strong practical significance.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3