Accelerated Reliability Growth Test for Magnetic Resonance Imaging System Using Time-of-Flight Three-Dimensional Pulse Sequence

Author:

Anand ,Shin ,Saxena ,Memon

Abstract

A magnetic resonance imaging (MRI) system is a complex, high cost, and long-life product. It is a widely known fact that performing a system reliability test of a MRI system during the development phase is a challenging task. The major challenges include sample size, high test cost, and long test duration. This paper introduces a novel approach to perform a MRI system reliability test in a reasonably acceptable time with one sample size. Our approach is based on an accelerated reliability growth test, which consists of test cycle made of a very high-energy time-of-flight three-dimensional (TOF3D) pulse sequence representing an actual hospital usage scenario. First, we construct a nominal day usage scenario based on actual data collected from an MRI system used inside the hospital. Then, we calculate the life-time stress based on a usage scenario. Finally, we develop an accelerated reliability growth test cycle based on a TOF3D pulse sequence that exerts highest vibration energy on the gradient coil and MRI system. We use a vibration energy model to map the life-time stress and reduce the test duration from 537 to 55 days. We use a Crow AMSAA plot to demonstrate that system design reaches its useful life after crossing the infant mortality phase.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Step stress accelerated reliability growth test method with latent failures;Quality Technology & Quantitative Management;2023-07-28

2. A highly accelerated stress reliability growth test method;Quality and Reliability Engineering International;2022-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3