Combined Artificial Intelligence Approaches Analyzing 1000 Conservative Patients with Back Pain—A Methodological Pathway to Predicting Treatment Efficacy and Diagnostic Groups

Author:

Wirries AndréORCID,Geiger Florian,Hammad Ahmed,Redder Andreas,Oberkircher LudwigORCID,Ruchholtz Steffen,Bluemcke Ingmar,Jabari Samir

Abstract

Patients with back pain are common and present a challenge in everyday medical practice due to the multitude of possible causes and the individual effects of treatments. Predicting causes and therapy efficien cy with the help of artificial intelligence could improve and simplify the treatment. In an exemplary collective of 1000 conservatively treated back pain patients, it was investigated whether the prediction of therapy efficiency and the underlying diagnosis is possible by combining different artificial intelligence approaches. For this purpose, supervised and unsupervised artificial intelligence methods were analyzed and a methodology for combining the predictions was developed. Supervised AI is suitable for predicting therapy efficiency at the borderline of minimal clinical difference. Non-supervised AI can show patterns in the dataset. We can show that the identification of the underlying diagnostic groups only becomes possible through a combination of different AI approaches and the baseline data. The presented methodology for the combined application of artificial intelligence algorithms shows a transferable path to establish correlations in heterogeneous data sets when individual AI approaches only provide weak results.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3