Ensemble Machine Learning Model to Predict SARS-CoV-2 T-Cell Epitopes as Potential Vaccine Targets

Author:

Bukhari Syed Nisar HussainORCID,Jain AmitORCID,Haq EhtishamulORCID,Mehbodniya AbolfazlORCID,Webber JulianORCID

Abstract

An ongoing outbreak of coronavirus disease 2019 (COVID-19), caused by a single-stranded RNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a worldwide pandemic that continues to date. Vaccination has proven to be the most effective technique, by far, for the treatment of COVID-19 and to combat the outbreak. Among all vaccine types, epitope-based peptide vaccines have received less attention and hold a large untapped potential for boosting vaccine safety and immunogenicity. Peptides used in such vaccine technology are chemically synthesized based on the amino acid sequences of antigenic proteins (T-cell epitopes) of the target pathogen. Using wet-lab experiments to identify antigenic proteins is very difficult, expensive, and time-consuming. We hereby propose an ensemble machine learning (ML) model for the prediction of T-cell epitopes (also known as immune relevant determinants or antigenic determinants) against SARS-CoV-2, utilizing physicochemical properties of amino acids. To train the model, we retrieved the experimentally determined SARS-CoV-2 T-cell epitopes from Immune Epitope Database and Analysis Resource (IEDB) repository. The model so developed achieved accuracy, AUC (Area under the ROC curve), Gini, specificity, sensitivity, F-score, and precision of 98.20%, 0.991, 0.994, 0.971, 0.982, 0.990, and 0.981, respectively, using a test set consisting of SARS-CoV-2 peptides (T-cell epitopes and non-epitopes) obtained from IEDB. The average accuracy of 97.98% was recorded in repeated 5-fold cross validation. Its comparison with 05 robust machine learning classifiers and existing T-cell epitope prediction techniques, such as NetMHC and CTLpred, suggest the proposed work as a better model. The predicted epitopes from the current model could possess a high probability to act as potential peptide vaccine candidates subjected to in vitro and in vivo scientific assessments. The model developed would help scientific community working in vaccine development save time to screen the active T-cell epitope candidates of SARS-CoV-2 against the inactive ones.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference61 articles.

1. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

2. The 2019 novel coronavirus disease (COVID-19) pandemic: A zoonotic prospective

3. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2

4. COVID Live Update: 225,488,491 Cases and 4,644,376 Deaths from the Coronavirus—Worldometerhttps://www.worldometers.info/coronavirus/

5. Cov-Lineageshttps://cov-lineages.org/global_report_B.1.617.2.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3