DW-UNet: Loss Balance under Local-Patch for 3D Infection Segmentation from COVID-19 CT Images

Author:

Chen ChengORCID,Zhou Jiancang,Zhou KangnengORCID,Wang Zhiliang,Xiao RuoxiuORCID

Abstract

(1) Background: COVID-19 has been global epidemic. This work aims to extract 3D infection from COVID-19 CT images; (2) Methods: Firstly, COVID-19 CT images are processed with lung region extraction and data enhancement. In this strategy, gradient changes of voxels in different directions respond to geometric characteristics. Due to the complexity of tubular tissues in lung region, they are clustered to the lung parenchyma center based on their filtered possibility. Thus, infection is improved after data enhancement. Then, deep weighted UNet is established to refining 3D infection texture, and weighted loss function is introduced. It changes cost calculation of different samples, causing target samples to dominate convergence direction. Finally, the trained network effectively extracts 3D infection from CT images by adjusting driving strategy of different samples. (3) Results: Using Accuracy, Precision, Recall and Coincidence rate, 20 subjects from a private dataset and eight subjects from Kaggle Competition COVID-19 CT dataset tested this method in hold-out validation framework. This work achieved good performance both in the private dataset (99.94–00.02%, 60.42–11.25%, 70.79–09.35% and 63.15–08.35%) and public dataset (99.73–00.12%, 77.02–06.06%, 41.23–08.61% and 52.50–08.18%). We also applied some extra indicators to test data augmentation and different models. The statistical tests have verified the significant difference of different models. (4) Conclusions: This study provides a COVID-19 infection segmentation technology, which provides an important prerequisite for the quantitative analysis of COVID-19 CT images.

Funder

National Key Research and Development Program of China

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of Thyroid Nodule Detection Using Ultrasound Images with Deep Learning;2024 Tenth International Conference on Bio Signals, Images, and Instrumentation (ICBSII);2024-03-20

2. Comprehensive exploration of UNet adaptations for improved COVID-19 CT segmentation;Sixth International Conference on Computer Information Science and Application Technology (CISAT 2023);2023-10-11

3. A learnable Gabor Convolution kernel for vessel segmentation;Computers in Biology and Medicine;2023-05

4. Generative Consistency for Semi-Supervised Cerebrovascular Segmentation From TOF-MRA;IEEE Transactions on Medical Imaging;2023-02

5. RESEARCH AND APPLICATION ADVANCES OF ARTIFICIAL INTELLIGENCE IN DIAGNOSIS AND EPIDEMIC PREDICTION OF COVID-19;Fractals;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3