A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images

Author:

Moreno-Lozano Maria Isabel1ORCID,Ticlavilca-Inche Edward Jordy2ORCID,Castañeda Pedro1ORCID,Wong-Durand Sandra1ORCID,Mauricio David3,Oñate-Andino Alejandra4

Affiliation:

1. Information Systems Engineering Faculty, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru

2. Software Engineering Faculty, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru

3. Systems Engineering and Informatic Faculty, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru

4. Informatic and Electronics Faculty, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba 060155, Ecuador

Abstract

In this article, various convolutional neural network (CNN) architectures for the detection of pterygium in the anterior segment of the eye are explored and compared. Five CNN architectures (ResNet101, ResNext101, Se-ResNext50, ResNext50, and MobileNet V2) are evaluated with the objective of identifying one that surpasses the precision and diagnostic efficacy of the current existing solutions. The results show that the Se-ResNext50 architecture offers the best overall performance in terms of precision, recall, and accuracy, with values of 93%, 92%, and 92%, respectively, for these metrics. These results demonstrate its potential to enhance diagnostic tools in ophthalmology.

Funder

Universidad Peruana de Ciencias Aplicadas

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3