Immunohistochemical Stain-Aided Annotation Accelerates Machine Learning and Deep Learning Model Development in the Pathologic Diagnosis of Nasopharyngeal Carcinoma

Author:

Lin Tai-Pei1,Yang Chiou-Ying2ORCID,Liu Ko-Jiunn345,Huang Meng-Yuan1ORCID,Chen Yen-Lin6ORCID

Affiliation:

1. Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan

2. Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan

3. National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan

4. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan

5. Institute of Clinical Pharmacy and Pharmaceutical Sciences and Institute of Clinical Medicine, National Cheng Kung University, Tainan 701, Taiwan

6. Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan

Abstract

Nasopharyngeal carcinoma (NPC) is an epithelial cancer originating in the nasopharynx epithelium. Nevertheless, annotating pathology slides remains a bottleneck in the development of AI-driven pathology models and applications. In the present study, we aim to demonstrate the feasibility of using immunohistochemistry (IHC) for annotation by non-pathologists and to develop an efficient model for distinguishing NPC without the time-consuming involvement of pathologists. For this study, we gathered NPC slides from 251 different patients, comprising hematoxylin and eosin (H&E) slides, pan-cytokeratin (Pan-CK) IHC slides, and Epstein–Barr virus-encoded small RNA (EBER) slides. The annotation of NPC regions in the H&E slides was carried out by a non-pathologist trainee who had access to corresponding Pan-CK IHC slides, both with and without EBER slides. The training process utilized ResNeXt, a deep neural network featuring a residual and inception architecture. In the validation set, NPC exhibited an AUC of 0.896, with a sensitivity of 0.919 and a specificity of 0.878. This study represents a significant breakthrough: the successful application of deep convolutional neural networks to identify NPC without the need for expert pathologist annotations. Our results underscore the potential of laboratory techniques to substantially reduce the workload of pathologists.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference36 articles.

1. Nasopharyngeal carcinoma;Chua;Lancet,2016

2. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;Bray;CA Cancer J. Clin.,2018

3. Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., and Piñeros, M. (2018). Global Cancer Observatory: Cancer Today, International Agency for Research on Cancer. Available online: https://gco.iarc.fr/today.

4. Nasopharyngeal carcinoma;Chen;Lancet,2019

5. Global trends in incidence and mortality of nasopharyngeal carcinoma;Tang;Cancer Lett.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3