Deep Learning-Based Extraction of Biomarkers for the Prediction of the Functional Outcome of Ischemic Stroke Patients

Author:

Oliveira Gonçalo12ORCID,Fonseca Ana Catarina3ORCID,Ferro José3ORCID,Oliveira Arlindo L.2ORCID

Affiliation:

1. NeuralShift, 1000-138 Lisbon, Portugal

2. INESC-ID, Instituto Superior Técnico, 1000-029 Lisbon, Portugal

3. Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal

Abstract

Accurately predicting functional outcomes in stroke patients remains challenging yet clinically relevant. While brain CTs provide prognostic information, their practical value for outcome prediction is unclear. We analyzed a multi-center cohort of 743 ischemic stroke patients (<72 h onset), including their admission brain NCCT and CTA scans as well as their clinical data. Our goal was to predict the patients’ future functional outcome, measured by the 3-month post-stroke modified Rankin Scale (mRS), dichotomized into good (mRS ≤ 2) and poor (mRS > 2). To this end, we developed deep learning models to predict the outcome from CT data only, and models that incorporate other patient variables. Three deep learning architectures were tested in the image-only prediction, achieving 0.779 ± 0.005 AUC. In addition, we created a model fusing imaging and tabular data by feeding the output of a deep learning model trained to detect occlusions on CT angiograms into our prediction framework, which achieved an AUC of 0.806 ± 0.082. These findings highlight how further refinement of prognostic models incorporating both image biomarkers and clinical data could enable more accurate outcome prediction for ischemic stroke patients.

Funder

Recovery and Resilience Fund towards the Center for Responsible AI project

Foundation for Science and Technology (FCT) for INESC-ID

Project PRELUNA

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference59 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3