Edge-Driven Multi-Agent Reinforcement Learning: A Novel Approach to Ultrasound Breast Tumor Segmentation

Author:

Karunanayake Nalan1ORCID,Moodleah Samart2ORCID,Makhanov Stanislav S.1ORCID

Affiliation:

1. Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand

2. King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

A segmentation model of the ultrasound (US) images of breast tumors based on virtual agents trained using reinforcement learning (RL) is proposed. The agents, living in the edge map, are able to avoid false boundaries, connect broken parts, and finally, accurately delineate the contour of the tumor. The agents move similarly to robots navigating in the unknown environment with the goal of maximizing the rewards. The individual agent does not know the goal of the entire population. However, since the robots communicate, the model is able to understand the global information and fit the irregular boundaries of complicated objects. Combining the RL with a neural network makes it possible to automatically learn and select the local features. In particular, the agents handle the edge leaks and artifacts typical for the US images. The proposed model outperforms 13 state-of-the-art algorithms, including selected deep learning models and their modifications.

Funder

Multidisciplinary Digital Publishing Institute

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3