Hypertension Assessment via ECG and PPG Signals: An Evaluation Using MIMIC Database

Author:

Liang Yongbo,Chen Zhencheng,Ward Rabab,Elgendi MohamedORCID

Abstract

Cardiovascular diseases (CVDs) have become the biggest threat to human health, and they are accelerated by hypertension. The best way to avoid the many complications of CVDs is to manage and prevent hypertension at an early stage. However, there are no symptoms at all for most types of hypertension, especially for prehypertension. The awareness and control rates of hypertension are extremely low. In this study, a novel hypertension management method based on arterial wave propagation theory and photoplethysmography (PPG) morphological theory was researched to explore the physiological changes in different blood pressure (BP) levels. Pulse Arrival Time (PAT) and photoplethysmogram (PPG) features were extracted from electrocardiogram (ECG) and PPG signals to represent the arterial wave propagation theory and PPG morphological theory, respectively. Three feature sets, one containing PAT only, one containing PPG features only, and one containing both PAT and PPG features, were used to classify the different BP categories, defined as normotension, prehypertension, and hypertension. PPG features were shown to classify BP categories more accurately than PAT. Furthermore, PAT and PPG combined features improved the BP classification performance. The F1 scores to classify normotension versus prehypertension reached 84.34%, the scores for normotension versus hypertension reached 94.84%, and the scores for normotension plus prehypertension versus hypertension reached 88.49%. This indicates that the simultaneous collection of ECG and PPG signals could detect hypertension.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference41 articles.

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3