Accurately Identifying Cerebroarterial Stenosis from Angiography Reports Using Natural Language Processing Approaches

Author:

Lin Ching-HengORCID,Hsu Kai-Cheng,Liang Chih-KuangORCID,Lee Tsong-Hai,Shih Ching-Sen,Fann Yang C.

Abstract

Patients with intracranial artery stenosis show high incidence of stroke. Angiography reports contain rich but underutilized information that can enable the detection of cerebrovascular diseases. This study evaluated various natural language processing (NLP) techniques to accurately identify eleven intracranial artery stenosis from angiography reports. Three NLP models, including a rule-based model, a recurrent neural network (RNN), and a contextualized language model, XLNet, were developed and evaluated by internal–external cross-validation. In this study, angiography reports from two independent medical centers (9614 for training and internal validation testing and 315 as external validation) were assessed. The internal testing results showed that XLNet had the best performance, with a receiver operating characteristic curve (AUROC) ranging from 0.97 to 0.99 using eleven targeted arteries. The rule-based model attained an AUROC from 0.92 to 0.96, and the RNN long short-term memory model attained an AUROC from 0.95 to 0.97. The study showed the potential application of NLP techniques such as the XLNet model for the routine and automatic screening of patients with high risk of intracranial artery stenosis using angiography reports. However, the NLP models were investigated based on relatively small sample sizes with very different report writing styles and a prevalence of stenosis case distributions, revealing challenges for model generalization.

Funder

Chang Gung Memorial Hospital Research Project

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3