Functional Evaluation of Major Salivary Glands Using Viscosity PLUS and 2D Shear-Wave PLUS Elastography Techniques in Healthy Subjects—A Pilot Study

Author:

Muntean Delia Doris,Lenghel Manuela Lavinia,Petea-Balea Diana-Raluca,Ciurea Anca IleanaORCID,Solomon Carolina,Dudea Sorin Marian

Abstract

Biological soft tissues are characterized by viscoelastic properties. The propagation of shear waves within tissues is influenced by both elasticity, which is linked to the shear wave speed, and viscosity, which is linked to the shear wave dispersion. This study aimed to functionally assess the parotid glands (PG) and submandibular glands (SMG) in a group of 40 healthy subjects using the novel Viscosity PLUS (Vi.PLUS) and 2D Shear-Wave Elastography PLUS (2D-SWE.PLUS) techniques. The viscosity and stiffness of PG and SMG were measured before and after gustatory stimulation with a sialagogue agent (commercially available lemon juice) using the new SuperSonic MACH 30 ultrasound system equipped with a curvilinear C6-1X transducer. PG presented a mean basal viscosity and elasticity of 2.10 ± 0.19 Pa.s and 11.32 ± 1.91 kPa, respectively, which significantly increased poststimulation to 2.39 ± 0.17 Pa.s (p < 0.001) and 12.58 ± 1.92 kPa (p < 0.001), respectively. SMG did not present statistically increased values of viscosity and elasticity following stimulation (2.31 ± 015 Pa.s vs. 2.37 ± 0.18 Pa.s, p = 0.086, and 10.40 ± 1.64 kPa vs. 10.90 ± 1.98 kPa, p = 0.074, respectively). Vi.PLUS measurements presented a good positive correlation with 2D-SWE.PLUS values for PG and SMG, before and after stimulation. Gender and BMI were not confounding factors for these two parameters. Vi.PLUS represents an innovative non-invasive imaging technique that, together with 2D-SWE.PLUS proves to be useful in functionally assessing the major salivary glands in healthy subjects.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3