Abstract
Chromoanagenesis is a phenomenon of highly complex rearrangements involving the massive genomic shattering and reconstitution of chromosomes that has had a great impact on cancer biology and congenital anomalies. Complex chromosomal rearrangements (CCRs) are structural alterations involving three or more chromosomal breakpoints between at least two chromosomes. Here, we present a 3-year-old boy exhibiting multiple congenital malformations and developmental delay. The cytogenetic analysis found a highly complex CCR inherited from the mother involving four chromosomes and five breakpoints due to forming four derivative chromosomes (2, 3, 6 and 11). FISH analysis identified an ultrarare derivative chromosome 11 containing three parts that connected the 11q telomere to partial 6q and 3q fragments. We postulate that this derivative chromosome 11 is associated with chromoanagenesis-like phenomena by which DNA repair can result in a cooccurrence of inter-chromosomal translocations. Additionally, chromosome microarray studies revealed that the child has one subtle maternal-inherited deletion at 6p12.1 and two de novo deletions at 6q14.1 and 6q16.1~6q16.3. Here, we present a familial CCR case with rare rearranged chromosomal structures and the use of multiple molecular techniques to delineate these genomic alterations. We suggest that chromoanagenesis may be a possible mechanism involved in the repair and reconstitution of these rearrangements with evidence for increasing genomic imbalances such as additional deletions in this case.
Funder
Ministry of Science and Technology, Taiwan