HTLML: Hybrid AI Based Model for Detection of Alzheimer’s Disease

Author:

Sharma SarangORCID,Gupta Sheifali,Gupta DeepaliORCID,Altameem Ayman,Saudagar Abdul Khader JilaniORCID,Poonia Ramesh Chandra,Nayak Soumya RanjanORCID

Abstract

Alzheimer’s disease (AD) is a degenerative condition of the brain that affects the memory and reasoning abilities of patients. Memory is steadily wiped out by this condition, which gradually affects the brain’s ability to think, recall, and form intentions. In order to properly identify this disease, a variety of manual imaging modalities including CT, MRI, PET, etc. are being used. These methods, however, are time-consuming and troublesome in the context of early diagnostics. This is why deep learning models have been devised that are less time-intensive, require less high-tech hardware or human interaction, continue to improve in performance, and are useful for the prediction of AD, which can also be verified by experimental results obtained by doctors in medical institutions or health care facilities. In this paper, we propose a hybrid-based AI-based model that includes the combination of both transfer learning (TL) and permutation-based machine learning (ML) voting classifier in terms of two basic phases. In the first phase of implementation, it comprises two TL-based models: namely, DenseNet-121 and Densenet-201 for features extraction, whereas in the second phase of implementation, it carries out three different ML classifiers like SVM, Naïve base and XGBoost for classification purposes. The final classifier outcomes are evaluated by means of permutations of the voting mechanism. The proposed model achieved accuracy of 91.75%, specificity of 96.5%, and an F1-score of 90.25. The dataset used for training was obtained from Kaggle and contains 6200 photos, including 896 images classified as mildly demented, 64 images classified as moderately demented, 3200 images classified as non-demented, and 1966 images classified as extremely mildly demented. The results show that the suggested model outperforms current state-of-the-art models. These models could be used to generate therapeutically viable methods for detecting AD in MRI images based on these results for clinical prospective.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference26 articles.

1. A Hybrid Machine Learning Framework for Biomarkers Based ADNI Disease Prediction;Krishna;Ilkogr. Online,2021

2. Automated MRI-Based Deep Learning Model for Detection of Alzheimer’s Disease Process

3. Transfer learning for Alzheimer’s disease detection on MRI images;Ebrahimi-Ghahnavieh;IAICT,2019

4. Classification of Alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learning;Aderghal;CBMS,2018

5. Diagnosis of Alzheimer’s Disease Using Dual-Tree Complex Wavelet Transform, PCA, and Feed-Forward Neural Network

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3