Deep into Laboratory: An Artificial Intelligence Approach to Recommend Laboratory Tests

Author:

Islam Md. MohaimenulORCID,Poly Tahmina Nasrin,Yang Hsuan-ChiaORCID,Li Yu-Chuan (Jack)ORCID

Abstract

Laboratory tests are performed to make effective clinical decisions. However, inappropriate laboratory test ordering hampers patient care and increases financial burden for healthcare. An automated laboratory test recommendation system can provide rapid and appropriate test selection, potentially improving the workflow to help physicians spend more time treating patients. The main objective of this study was to develop a deep learning-based automated system to recommend appropriate laboratory tests. A retrospective data collection was performed at the National Health Insurance database between 1 January 2013, and 31 December 2013. We included all prescriptions that had at least one laboratory test. A total of 1,463,837 prescriptions from 530,050 unique patients was included in our study. Of these patients, 296,541 were women (55.95%), the range of age was between 1 and 107 years. The deep learning (DL) model achieved a higher area under the receiver operating characteristics curve (AUROC micro = 0.98, and AUROC macro = 0.94). The findings of this study show that the DL model can accurately and efficiently identify laboratory tests. This model can be integrated into existing workflows to reduce under- and over-utilization problems.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ovarian cancer data analysis using deep learning: A systematic review;Engineering Applications of Artificial Intelligence;2024-12

2. Development and translation of human-AI interaction models into working prototypes for clinical decision-making;Designing Interactive Systems Conference;2024-07

3. Artificial intelligence in the clinical laboratory;Clinica Chimica Acta;2024-06

4. Medical Laboratory Artificial Intelligence;Artificial and Cognitive Computing for Sustainable Healthcare Systems in Smart Cities;2024-05-17

5. Strengths-weaknesses-opportunities-threats analysis of artificial intelligence in anesthesiology and perioperative medicine;Frontiers in Digital Health;2024-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3