Accuracy of a Smartphone-Based Artificial Intelligence Application for Classification of Melanomas, Melanocytic Nevi, and Seborrheic Keratoses

Author:

Liutkus Jokubas12,Kriukas Arturas12,Stragyte Dominyka12,Mazeika Erikas12,Raudonis Vidas3,Galetzka Wolfgang4,Stang Andreas4ORCID,Valiukeviciene Skaidra12

Affiliation:

1. Department of Skin and Venereal Diseases, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania

2. Department of Skin and Venereal Diseases, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, 50161 Kaunas, Lithuania

3. Artificial Intelligence Center, Kaunas University of Technology, 51423 Kaunas, Lithuania

4. Institute of Medical Informatics, Biometrics and Epidemiology, University Hospital Essen, 45130 Essen, Germany

Abstract

Current artificial intelligence algorithms can classify melanomas at a level equivalent to that of experienced dermatologists. The objective of this study was to assess the accuracy of a smartphone-based “You Only Look Once” neural network model for the classification of melanomas, melanocytic nevi, and seborrheic keratoses. The algorithm was trained using 59,090 dermatoscopic images. Testing was performed on histologically confirmed lesions: 32 melanomas, 35 melanocytic nevi, and 33 seborrheic keratoses. The results of the algorithm’s decisions were compared with those of two skilled dermatologists and five beginners in dermatoscopy. The algorithm’s sensitivity and specificity for melanomas were 0.88 (0.71–0.96) and 0.87 (0.76–0.94), respectively. The algorithm surpassed the beginner dermatologists, who achieved a sensitivity of 0.83 (0.77–0.87). For melanocytic nevi, the algorithm outclassed each group of dermatologists, attaining a sensitivity of 0.77 (0.60–0.90). The algorithm’s sensitivity for seborrheic keratoses was 0.52 (0.34–0.69). The smartphone-based “You Only Look Once” neural network model achieved a high sensitivity and specificity in the classification of melanomas and melanocytic nevi with an accuracy similar to that of skilled dermatologists. However, a bigger dataset is required in order to increase the algorithm’s sensitivity for seborrheic keratoses.

Funder

Lietuvos Mokslo Taryba

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3