Non-Rigid Registration for High-Resolution Retinal Imaging

Author:

Mujat Mircea1ORCID,Akula James23ORCID,Fulton Anne23,Ferguson R.1,Iftimia Nicusor1

Affiliation:

1. Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA

2. Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA

3. Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA

Abstract

Adaptive optics provides improved resolution in ophthalmic imaging when retinal microstructures need to be identified, counted, and mapped. In general, multiple images are averaged to improve the signal-to-noise ratio or analyzed for temporal dynamics. Image registration by cross-correlation is straightforward for small patches; however, larger images require more sophisticated registration techniques. Strip-based registration has been used successfully for photoreceptor mosaic alignment in small patches; however, if the deformations along strips are not simple displacements, averaging can degrade the final image. We have applied a non-rigid registration technique that improves the quality of processed images for mapping cones over large image patches. In this approach, correction of local deformations compensates for local image stretching, compressing, bending, and twisting due to a number of causes. The main result of this procedure is improved definition of retinal microstructures that can be better identified and segmented. Derived metrics such as cone density, wall-to-lumen ratio, and quantification of structural modification of blood vessel walls have diagnostic value in many retinal diseases, including diabetic retinopathy and age-related macular degeneration, and their improved evaluations may facilitate early diagnostics of retinal diseases.

Funder

National Eye Institute

Department of Defense

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3