Additional Value of PET and CT Image-Based Features in the Detection of Occult Lymph Node Metastases in Lung Cancer: A Systematic Review of the Literature

Author:

Guglielmo Priscilla1,Marturano Francesca2ORCID,Bettinelli Andrea2ORCID,Sepulcri Matteo3ORCID,Pasello Giulia45,Gregianin Michele1,Paiusco Marta2,Evangelista Laura6ORCID

Affiliation:

1. Nuclear Medicine Unit, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy

2. Medical Physics Unit, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy

3. Radiotherapy, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy

4. Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy

5. Medical Oncology 2, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy

6. Nuclear Medicine Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy

Abstract

Lung cancer represents the second most common malignancy worldwide and lymph node (LN) involvement serves as a crucial prognostic factor for tailoring treatment approaches. Invasive methods, such as mediastinoscopy and endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA), are employed for preoperative LN staging. Among the preoperative non-invasive diagnostic methods, computed tomography (CT) and, recently, positron emission tomography (PET)/CT with fluorine-18-fludeoxyglucose ([18F]FDG) are routinely recommended by several guidelines; however, they can both miss pathologically proven LN metastases, with an incidence up to 26% for patients staged with [18F]FDG PET/CT. These undetected metastases, known as occult LN metastases (OLMs), are usually cases of micro-metastasis or small LN metastasis (shortest radius below 10 mm). Hence, it is crucial to find novel approaches to increase their discovery rate. Radiomics is an emerging field that seeks to uncover and quantify the concealed information present in biomedical images by utilising machine or deep learning approaches. The extracted features can be integrated into predictive models, as numerous reports have emphasised their usefulness in the staging of lung cancer. However, there is a paucity of studies examining the detection of OLMs using quantitative features derived from images. Hence, the objective of this review was to investigate the potential application of PET- and/or CT-derived quantitative radiomic features for the identification of OLMs.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3