Investigating Beta-Variational Convolutional Autoencoders for the Unsupervised Classification of Chest Pneumonia

Author:

Akila Serag Mohamed1ORCID,Imanov Elbrus2,Almezhghwi Khaled3ORCID

Affiliation:

1. Department of Biomedical Engineering, Near East University, Mersin 10, 99138 Nicosia, Turkey

2. Department of Computer Engineering, Near East University, Mersin 10, 99138 Nicosia, Turkey

3. Electrical and Electronics Engineering, College of Electronics Technology Tripoli, Tripoli 00000, Libya

Abstract

The world’s population is increasing and so is the challenge on existing healthcare infrastructure to cope with the growing demand in medical diagnosis and evaluation. Although human experts are primarily tasked with the diagnosis of different medical conditions, artificial intelligence (AI)-assisted diagnoses have become considerably useful in recent times. One of the critical lung infections, which requires early diagnosis and subsequent treatment to reduce the mortality rate, is pneumonia. There are different methods for obtaining a pneumonia diagnosis; however, the adoption of chest X-rays is popular since it is non-invasive. The AI systems for a pneumonia diagnosis using chest X-rays are often built on supervised machine-learning (ML) models, which require labeled datasets for development. However, collecting labeled datasets is sometimes infeasible due to constraints such as human resources, cost, and time. As such, the problem that we address in this paper is the unsupervised classification of pneumonia using unsupervised ML models including the beta-variational convolutional autoencoder (β-VCAE) and other variants, such as convolutional autoencoders (CAE), denoising convolutional autoencoders (DCAE), and sparse convolutional autoencoders (SCAE). Namely, the pneumonia classification problem is cast into an anomaly detection to develop the aforementioned ML models. The experimental results show that pneumonia can be diagnosed with high recall, precision, f1-score, and f2-score using the proposed unsupervised models. In addition, we observe that the proposed models are competitive with the state-of-the-art models, which are trained on a labeled dataset.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solar Radiation Prediction In Libya Using Neural Networks;2024 IEEE 4th International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA);2024-05-19

2. Exploiting Remote Sensing Imagery for Vehicle Detection and Classification Using an Artificial Intelligence Technique;Remote Sensing;2023-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3