Skeleton Segmentation on Bone Scintigraphy for BSI Computation

Author:

Yu Po-Nien1,Lai Yung-Chi2,Chen Yi-You1,Cheng Da-Chuan13ORCID

Affiliation:

1. Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan

2. Department of Nuclear Medicine, Feng Yuan Hospital Ministry of Health and Welfare, Taichung 420, Taiwan

3. Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung 404, Taiwan

Abstract

Bone Scan Index (BSI) is an image biomarker for quantifying bone metastasis of cancers. To compute BSI, not only the hotspots (metastasis) but also the bones have to be segmented. Most related research focus on binary classification in bone scintigraphy: having metastasis or none. Rare studies focus on pixel-wise segmentation. This study compares three advanced convolutional neural network (CNN) based models to explore bone segmentation on a dataset in-house. The best model is Mask R-CNN, which reaches the precision, sensitivity, and F1-score: 0.93, 0.87, 0.90 for prostate cancer patients and 0.92, 0.86, and 0.88 for breast cancer patients, respectively. The results are the average of 10-fold cross-validation, which reveals the reliability of clinical use on bone segmentation.

Funder

National Science and Technology Council (NSTC), Taiwan

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference29 articles.

1. Metastatic bone disease: Clinical features, pathophysiology, and treatment strategies;Coleman;Cancer Treat. Rev.,2001

2. (2022, May 12). National Health Insurance Research Database, Available online: https://www.mohw.gov.tw/cp-16-70314-1.html.

3. Imaging of bone metastasis: An update;Carty;World J. Radiol.,2015

4. Clinical features of metastatic bone disease and risk of skeletal morbidity;Coleman;Clin. Cancer Res.,2006

5. The bone scan;Brenner;Semin. Nucl. Med.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3