Synthetic Attenuation Correction Maps for SPECT Imaging Using Deep Learning: A Study on Myocardial Perfusion Imaging

Author:

Prieto Canalejo Mariana1,Palau San Pedro Aley2ORCID,Geronazzo Ricardo2ORCID,Minsky Daniel3,Juárez-Orozco Luis4,Namías Mauro2ORCID

Affiliation:

1. Facultad Regional Buenos Aires, Universidad Tecnológica Nacional, Buenos Aires C1179AAS, Argentina

2. Fundación Centro Diagnóstico Nuclear (FCDN), Buenos Aires C1417CVE, Argentina

3. Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, San Martín B1650LWP, Argentina

4. Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands

Abstract

(1) Background: The CT-based attenuation correction of SPECT images is essential for obtaining accurate quantitative images in cardiovascular imaging. However, there are still many SPECT cameras without associated CT scanners throughout the world, especially in developing countries. Performing additional CT scans implies troublesome planning logistics and larger radiation doses for patients, making it a suboptimal solution. Deep learning (DL) offers a revolutionary way to generate complementary images for individual patients at a large scale. Hence, we aimed to generate linear attenuation coefficient maps from SPECT emission images reconstructed without attenuation correction using deep learning. (2) Methods: A total of 384 SPECT myocardial perfusion studies that used 99mTc-sestamibi were included. A DL model based on a 2D U-Net architecture was trained using information from 312 patients. The quality of the generated synthetic attenuation correction maps (ACMs) and reconstructed emission values were evaluated using three metrics and compared to standard-of-care data using Bland–Altman plots. Finally, a quantitative evaluation of myocardial uptake was performed, followed by a semi-quantitative evaluation of myocardial perfusion. (3) Results: In a test set of 66 test patients, the ACM quality metrics were MSSIM = 0.97 ± 0.001 and NMAE = 3.08 ± 1.26 (%), and the reconstructed emission quality metrics were MSSIM = 0.99 ± 0.003 and NMAE = 0.23 ± 0.13 (%). The 95% limits of agreement (LoAs) at the voxel level for reconstructed SPECT images were: [−9.04; 9.00]%, and for the segment level, they were [−11; 10]%. The 95% LoAs for the Summed Stress Score values between the images reconstructed were [−2.8, 3.0]. When global perfusion scores were assessed, only 2 out of 66 patients showed changes in perfusion categories. (4) Conclusion: Deep learning can generate accurate attenuation correction maps from non-attenuation-corrected cardiac SPECT images. These high-quality attenuation maps are suitable for attenuation correction in myocardial perfusion SPECT imaging and could obviate the need for additional imaging in standalone SPECT scanners.

Funder

Ministry of Productive Develoment of Argentina

Fundación Centro Diagnóstico Nuclear

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3